Ecological Rational for Multiple, Plant Secondary Compounds

(Gossypium L.)
Image via Wikipedia

As I’ve studied medicinal plants, one intriguing question keeps cropping up – what is the biological rationale for plants investing in several classes of structurally varied plant secondary metabolites?. Certainly this question drives a number of researchers in the field of plant chemical ecology. Edwards et al (2008) provided some striking evidence from their study of bacteria resistant cotton (Gossypium hirsutum).

They detected flavonoid pigments, chrysanthemin and isoquercitin, at unusually high levels in epidermal tissue of young leaves in response to Xanthomonas infection. These cells clustered around infected cells that had died because of the plant’s hypersensitive resistance response.

A very different chemical, a  sesquiterpene, 2,7-dihyroxycadalene, acted as a light activated phytoalexin, destroying both bacteria and the infected plant cell. So what were the flavanoids doing to help out? The presence of the flavanoids in surrounding cells appeared to filter sunlight, limiting the generation of free radicals resulting from light activation of 2,7-dihyroxycadaline. How’s that for compartmentalizing your response to friends and enemies?

It’s in the Dirt

Arbuscular mycorrhiza seen under microscope. F...
Image via Wikipedia

Well, dirt plus nutrient content. Organic farmers know that it’s really about the soil. In particular, the “living” component of the soil. Researchers are now catching up with findings that help explain why soils on organic farms and in native woodland ecologies have greater concentrations of fungal spores in the soil and greater levels fungal colonization of plant roots – particularly the symbiotic or helpful fungi.

Mycorrhizal fungi form a symbiotic relationship with plant roots, each exchanging benefits with the other. The plant gains phosphorous from the extended “root-like” threads of fungal hyphae, while the fungi absorb glucose stored in plant root cells, which was originally metabolized (made) by the plant during photosynthesis. Additional benefits these fungi provide the plants include enhanced disease resistance, soil stability and structure, as well as nitrogen fixation.

However, the fungus cannot be cultivated in the absence of a host plant root. Commercial farming often suffers from dead soil. The USDA’s Eastern Regional Research Center (ERRC) focuses research on the use of mycorrhizal fungi to improve crop quality and yield. Researchers at this facility try to understand the necessary chemical signal exchanged between plant and fungus required during the various stages of fungal development. Their aim is to grow the fungus on artificial media without the presence of plant roots. Because of the numerous benefits that mycorrhizal fungi provide, commercial farmers hope that a fungal inoculum could then be used to limit the amount of fertilizers applied to large scale crops while still improving plant growth and health.

I’ll come back to the way plant and fungus woo each other, whispering sweet chemical cross talk…