Everybody’s Dancing with Every One Else

A paper out of the Hawes Lab noted that root border cells respond to or probe the surrounding soil by releasing a multitude of proteins, amino acids, sugars and secondary metabolites, and they do so even after the cells detach from the root cap. This material, called exudates, appears to alter the surrounding rhizosphere community of microorganismsCurlango-Rivera et al., (2010) investigated the consequence of these plant exudates on the growth and production of root border cells. Exposure to pisatin, at concentrations capable of inhibiting fungal growth, stimulated production of root border cells, while exposure to a plant cell wall component, ferulic acid, inhibited growth of root border cells. Pisatin is a  phytoalexin, a secondary metabolite made by the plant to limit microbial attack.

Ferulic Acid
Ferulic Acid

Does this indicate that plant root investment in root border cells as sensory organs occurs under the protective influence of a plant phytoalexins, but that cell wall fragments resulting from the rupture of root cap cells under microbial attack may limit plant root border cell proliferation? I am curious about experimental results if simultaneous exposure to the compounds occurred? Ferulic acid is often bound to a matrix of polymer structures found in plant cell walls. Would it take time for diffusion of these compounds into the rhizosphere to gain concentrations able to impart a biological effect?

Fermentation as an Extraction Method

Although most cultures have fermented food as a staple in their dietary patterns, little has been reported on the use of fermentation as an herbal extraction method. The process may contribute more than just modifying solvent pH. Rizzello et al. (2013) reported using a lactic acid fermentation with specific yeast strains that improved the antioxidant activity of Echinacea purpurea. They compared fermentation extraction to either a methanol or water extract without fermentation. The greatest antimicrobial activity was associated with low molecular mass compounds negated in the presence of digestive enzymes, suggesting small peptides as the active agent.  The authors cited other experiments with grapes, soy and cereal grains where the fermentation process increased bio-availability of  certain compounds and produced novel chemical species.

This process is worth exploring by both herbal supplement companies and herbalist as a new medicine making method. Traditional texts provide some guidance.  Enzymatic processes can optimize extraction of plant cellular content at lower temperatures. And research (Mishra et al., 2010; Mulay and Khale, 2011) applying traditional Ayurvedic methods of  fermented extraction found reduced toxicity in the final product. This opens up a little explored market around functional foods as well.

Reference:

  1. Mishra AKGupta AGupta VSand RBansal P2010Asava and arishta: an Ayrvedic medicine – an overview. Int J Pharm Biol Arch. 1(1):2430.
  2. Mulay SKhale A2011Asavarishtas through improved fermentation technology. Int J Pharma Sci Res. 2(6):14211425.
  3. Rizzello, CG et al. (2013) Lactic acid fermentation as a tool to enhance the functional features of Echinacea spp. Microbial Cell Factories. 12:44-59.

 

Not Blueberry Pie, but Close

Vaccinium myrtillus
Image via Wikipedia

Bilberry (Vaccinium myrtillus) contains varying levels of phenolic compounds – anthocyanins, chlorogenic acid derivatives, hydroxycinnamic acids, flavonol glycosides, catechins, and proanthocyanidins. Research by Martz et al (2010) elucidated how levels of bilberry leaf phenolics differed along an ecological gradient in boreal forests running north to south in Finland. These regions differ in latitude, altitude, over story cover, levels of continuous light, temperature and associated frost spells.

An analysis of bilberry leaves showed that major phenolic changes in bilberry leaves appeared in the first stages of leaf development. As important, synthesis and accumulation of flavonoids was delayed in the forest compared to the high light sites. Two-fold higher flavonoid levels appeared in leaf tissue growing in high-light intensity sites, higher latitudes, and/or higher altitudes compared to in lower altitudes and low-light intensity sites.

Close and Mcarther (2002) previously theorized that the presence of greater phenolic levels in leaf tissue found in northern regions was a response to colder temperatures, which would limit essential enzyme function, during periods of maximal photo-oxidative stress (Close and Mcarther, 2002).  However, Martz et al (2010) also showed that leaf flavanoid genes were highly expressed in shade, but that the timing of expression appeared to alter the relative metabolite levels in shade compared to sun exposed bilberry leaf.

Mudge et al., (2016), researched phenolic profiles of wild elderberry fruits (Sambucus nigra subsp. canadensis) over two years in eastern US, noting that flavanols (quercitin, isoquercitin, rutin) and chlorogenic acid metabolite concentrations were higher in the southeast, particularly interior. They suggested the variation of phytochemical profiles of the berries were impacted by genetic or environmental factors without understanding on which was more important.

What’s missing from the data picture includes a more complex measurement of ecological influences, such as response to herbivory and rhizosphere fungal associations? This type of whole community data would help to build a more complete picture of  plant response.

This requires sampling, sampling, sampling.

_______________________________________________

  1. Martz, F., Jaakola, L., Julkunen-Tiitto, R. and Stark, S. (2010). Phenolic Composition and Antioxidant Capacity of Bilberry (Vaccinium myrtillus) Leaves in Northern Europe Following Foliar Development and Along Environmental Gradients. J Chem Ecol, published online, 19 August 2010
  2. Close, D.C., and Mcarther, C. (2002). Rethinking the role of many plant phenolics—protection from photodamage not herbivores? Oikos. 99:166–172
  3. Mudge, E., Applequist, W. L., Finley, J., Lister, P., Townesmith, A. K., Walker, K. M., & Brown, P. N. (2016). Variation of Select Flavonols and Chlorogenic Acid Content of Elderberry Collected Throughout the Eastern United States. Journal of food composition and analysis : an official publication of the United Nations University, International Network of Food Data Systems, 47, 52–59.