Lousewort

Watercolor painting of Pedicularis_bracteosa-2.
(Wikipedia)

Pedicularis bracteosa
P. canadensis
P. greenlandica
P. attollens

Ecology – Hemi-parasite

Molecular phylogeny more recently placed the genus Pedicularis in the Orobanchaceae, when formally it had been  in part of Scrophulariaceae.

Herbalist Michael Moore has written on the therapeutic uses Pedicularis spp., as has David Winston and 7Song.

The plant is an excellent skeletal muscle relaxant, with some of its specific indications as follows:

  • Adrenaline-stressed or nerve impinged muscles
  • Hypertonicity and muscular rigidity
  • Children with highly excited flight or fight response

I’ve created formula with Pedicularis for massage therapist and chiropractors to  increase “hold” of treatment. In particular, it combines well with other skeletal muscle relaxants include Black cohosh (Actaea racemosa), Kava kava (Piper methysticum) and Skullcap (Scutellaria).

Since it is a root parasite the plant can take up compounds from it’s host plant. Schnieder and Stermitz (1990) noted that several Pediculars.spp. uptake alkaloids from a variety of hosts: pyrrolizidine alkaloid senecionine from Senecio triangularis, anagyrine from Thermopsis montanaN-methylcytisine from  Thermopsis divaricarpa and quinolizidines from Lupinus argenteus.

For this reason it’s unclear which therapeutic compounds are made by the plant and which come from host, which can make the safety profile a little trickier to predict. The host compounds can even alter the pigment of Pedicularis flowers. Best to find it growing alone in its own stand, or rely on a highly skilled wildcrafter to help identify a good stand.

Experimentation and observational studies have shown that two hosts can be parasitized simultaneously. Such threesomes seem to improve the overall growth performance and survivability of the parasite.

This is a fascinating plant that requires the deft touch of an herbalist, with science providing interesting data on how plant parasites interact with their ecosystem.

 

 

 

 

Plant Chemical Out Posts

Flower of Garden Strawberry (Fragaria ×ananassa)
Image via Wikipedia

The search for chemical mediators in plant root rhizosphere interactions with symbiotic and pathogenic organisms found in the soil continues to generate interesting research. Martha Hawes group at the University of Arizona reported on the role of sugars, proteins and small molecules found in root cap secretions – a mucilaginous mixture that covers the growing root tip and “converses” with the surrounding matrix of living organisms. The cap is rich in root border cells, which detach from the growing root tip. Curlango-Rivera et al (2010) provides us a bit more detail about which metabolites are biologically active. Neither sugars nor amino acids triggered root growth or border cell production. Transient exposure to biologically active concentration levels of the isoflavonoid pisatin, a phytoalexin, stimulated root border cell production but not root tip growth. I wonder if inhibition of root elongation may “reset” plant growth patterns as root border cells, acting as chemical sense organs, define the nature of the environment?

A second paper used histochemcial methods to profile root metabolites in plants from the Rose family (Hoffman et al., 2010). They found flavan-3-ol molecules in the root tip and border cells. Their findings suggest that the distribution of flavan-3-ols in Fragaria and Malus is under tight developmental control. These molecules are found in plants as catechin and epicatechin derivatives and in long chain (polymeric) form. They influence the taste and medicinal potential of green tea and wine, to name a few well-known plants. Previous researchers summarized their role in chelating toxic cations (metals) in the soil, establishing mycorrhizal interactions and priming plant root defense. This paper suggests a role in the transport of the long distance plant hormone auxin, which would link the chemical cross talk at root border cells with responses that occur in tissue distal to root tips. Hoffman’s research lacked a clear distinction of whether the monomeric or polymeric flavan-3-ol forms where the active species. This has plagued plant research for some time, since the analytical methods for detecting the polymeric forms have been crude and ineffective. All of their samples were from a botanical garden. I wonder if the flavan-3-ol profile would differ compared to native wild grown species?

References:

  1. Curlango-Rivera, G. et al. (2010) Plant Soil 332:267-275
  2. Hoffmann, T. et al. (2011) Plant Biology, 13: no. doi: 10.1111/j.1438-8677.2011.00462.x

Good Wine, Good Fungi

A study of organic soils found that the those associated with organic gardening compared to conventional methods or native grasslands, was very similar in types and diversity of mycorrhizal fungal taxa to that of the native soils. Increasingly, viticulturalists have been promoting the sustainability of using organic techniques over the fungicide heavy approaches of conventional wine management practices, and that this fundamental investment in “terroir” makes better wine. One method is to restore the density and diversity of beneficial, symbiotic fungi in the vineyard soil. These fungi are seriously depleted in soils that have had extensive chemical fertilizers, fungicides or pesticides applied.

Mycorrhizal inoculum applied to new vines plantings and as a dressing to cover crop used to improve nitrogen availability in vineyard soils, associates with the vine roots and  increases both the available levels of organic carbon and the water holding capacity of the surrounding soils. And with healthy vines, and a biological approach to vineyard management in place, the rhizosphere community rich in mycorrhizal fungi can influence the quality of wine produced. 

Gabriele et al. (2016) investigated the effect of mycorrhizal inoculation of various Sangiovese wine grapes. The symbiotic relationships improved the oxidative stability, thus the potential ability of the wine to age, and increased 14 polyphenols compared to un-inoculated plants. The later effect may improve the structure and the flavor profile of the wine.

I’ve asked to join the downstream portion of the research team to investigate the impact of these changes on the consumers experience.